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1. Introduction. We consider the evaluation of: 

(1)p fL f f(x, y) exp {-(x2 + y2)} Idxdy, 

where f(x, y) is unity inside the ellipse 

(2) b2(x - h)2 + a2(y - k)2 = 2 

and zero elsewhere. The two special cases mentioned below have received a good 
deal of attention, comprehensive bibliographies will be found in [1] and [2]. If 
a -b, there is no loss of generality in taking k = 0, and extensive tables exist 
fo" the offset circle integral. For the central ellipse, h = k = 0, the integral can 
be deduced from that for the offset circle using a result given in [2]. An efficient 
method for the general case, based on Gaussian quadrature and the use of a table 
for Erf (x), has been described in [3] and [4]. Tables for P of limited extent will 
be found in [5] and [6], while an extensive table in inverse form is given in [4]. 

The purpose of this note is to describe an approximation, accurate to 3 decimal 
places, and suitable for an electronic computer. This does not employ a table of 
Erf (x), and is thus more compact in termis of computer storage than the method 
of [3]. A comparison of computing times is given in Section 3. 

The method is equivalent to a quadrature formula requiring the evaluation of 
the exponential at 3a'(a + 1) + 1 points for an ellipse of semi-major axis a, 
where a is the integral part of (a + 0.5). Increasing the number of evaluations 
by a factor of 4 reduces the maximum error to 0.0001 for semi-major axes less than 
8 units. The average number of evaluations can be reduced considerably by neglect- 
ing terms where the index of the exponential falls below a prescribed value, since 
the number now depends on h, k and tends to zero as they increase. 

The basis of the method is the diffuse target concept, used in a number of wea- 
pon studies, e.g. in [7]. The function f is approximated by 

(3) f (x, y) = 2 exp - 2 
b(x-h)2+a2(y-)2}. 

The surface z = f(x, y) consists of a flat-topped elliptic cylinder of unit height, 
together with the region of the plane z = 0 lying outside (2). The approximating 
surface is bell-shaped, and goes to infinity in all directions, hence the name "diffuse 
target." The value of 

*00 00 

(4) ff (U f f*) dx dy, 
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is zero for odd t and t = 0 and 2. Similar results hold for moments about Ox. The 
expression 

(5) Pi(a,b,h,k) {(a2 + 2ab + 4)1 exp - 2{2 
2 4+ b2+ 

obtained by replacing f by f*, is surprisingly accurate for small a and b. If the semi- 
major axis does not exceed 0.5, errors are less than 0.0002. Replacing f by the 
approximation 

(6) 16 b2(x - h)2 + a2(y-k )2 b2(x - h)2 + a2(y ) 
l ~~a2b2 a2xpVlJ 

was found to lead to 

P(a, b, h k) - 16ab (a2(1 + h2) + 8 b2(1 + k2) + 8 

(7) ~~~(a2 + 8) (b2 + 8) 2' (a2 + 8)2 (b2 + 8)2 

X exp-4 {2 + 8 + b2+8> 

This is of higher accuracy, and the combination (4P2 - P1)/3, arrived at by match- 
ing moments up to order 4, gives errors less than 0.0001 for semi-major axes less 
than 1. The method was also found to be useful in the analogous three dimensional 
problem of integrating a spherical Gaussian distribution over an offset ellipsoid. 
Below, a method of target diffusion based on a series of forms like (3) is considered. 
This method is able to deal with targets of any size. The use of more complicated 
expressions, typified by (6), can be extended and the results improved; but such 
extensions inevitably allow only a limited increase in target size. We seek a syste- 
matic method of diffusing an ellipse, involving the sum of a set of functions like 
(3). It turns out that a chain of 6 functions, with centres lying on an ellipse similar 
to the target, together with a central function, gives 3 decimal place accuracy for 
semi-major axes up to 1.5 units. By adding a chain of 12 centres lying outside this 
configuration, the semi-major axis can be extended to 2.5 units. Each such chain 
added extends the largest semi-major axis that can be dealt with accurately by 
one unit. 

The target is thus regarded as split into a succession of elliptic annuli, each 
being diffused by its own chain of functions. There is, in addition, a small central 
ellipse. The number of such chains needed is the integral part of (semi-najor axis 
+ 0.5). The maximum width of each annulus is equal to the full major axis of the 
central ellipse, and this width never exceeds one unit. 

The disposition of diffusing points for an ellipse corresponds to the pattern for 
the circle from which it is derived by orthogonal projection. Thus the major axis 
alone enters in determining the number of diffusing functions. As a consequence, 
accuracy for a narrow ellipse is usually considerably higher than for a circle with 
the same major axis. 

2. An Approximation for the Elliptic Annulus. We consider the use of 6 diffuse 
target functions, with centres lying on an ellipse with centre (h, k) aind semi-axes 
(ad/X, bd/X), arid equally spaced in eccentric angle. They lead to the approximat- 
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ing function 

(8) (6r1) exp (Xx- Xh -ad cos irj/3r)2 - (Xy -Abd sin -7rj3r)'J 

The number r, inserted here for convenience, is at present taken to be 1. The area 
lying between ellipses with centres at (h, k) and with semi-axes (a/X, b/X) and 
(a, b) respectively is to be approximated by (8), taking X greater than 1. Matching 
moments up to order 2 leads to 

c(X2-2d2 + 1) =41 

12rg= c(X2 _ 1) 

If in addition, 

(10) 6d = X4 + 4X2 + 1, 

there will be agreement of moments up to order 4. In order to cover semi-major 
axes up to 1.5 units, we assume that (5) is satisfactory up to 0.5 units and take 
X = 3. It is found that, while (10) gives d = 2.106, a value of 2.094 gives better 
results over the range being considered. 

This leads to the approximation 

Pi(a/3, b/3, h, k) + gab 
{ (a2 + 9c) (b2 + 9CXV 

(11) c Jexp (3h + ad cos 7rj/3)2 (3k + bd sin 7rj/3)2} X 1:exp - a2 j-9C + b2+ 9C 

for the integral, over an ellipse centre (h, k) and with semi-axes (a, b). The values 
of g and c follow from (9), and for max (a, b) less than 1.5, errors are less than 
0.00055. 

To extend the semi-major axis to 2.5 units, we can use the annulus between 
ellipses with semi-axes (3a/5, 3b/5) and (a, b). Thus X = 5/3; and the values 
d = 1.3476 and r = 2, corresponding to a chain of 12 diffusion points, prove 
suitable. Thereafter successive values of 7/5, 9/7 ... for X can be used, and for 
these later values, the value of d is found from (10). An algorithm based on the 
use of successive annuli, each with width along the major axis less than or equal 
to unity, is described in the next section. 

3. The Computational Procedure. We define the function 

Br( (3 C d, h,k) {(a+ c)(32 + C)}i 

(12) ~~~(6 r-1) c (h + ad cos wj/3r )2+ (k + (3d sin wj/3) 2) 

X Z exp + 2+c }I-2 
j=o 

We now determine m, the number of annuli, from 

(13) m = integer part (semi-major axis + 0.5), 

and define Xr , ar and br for r from 1 to m by 
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(14) Xr = (2r + 1)/(2r - 1), ar = ar+l/Xr , br = br+l/Xr X 

with am?+ = a, bm+i = b. Next we construct dr , Cr and gr for r from 1 to mn, using 
the relations 

di= 2.094, d2 = 1.3476, 6dr4 = Xr4 + 4Xr2 + 1 for r > 2, 

(15) Cr(Xr2- 2dr2 + 1) = 4) 
for r > 0. 

l2rgr = Cr(Xr - 1) 

The approximation to the integral is given by 
m 

(16) Pi (a, , bi , h, k) + 1 grBr (ar X br X cr X dr X h, k). 
r-1 

It is easy to modify (12) slightly, so that a single subroutine covers the computa- 
tion of both P1 and the functions Br . 

In order to reduce the time involved in computing sines, cosines and exponen- 
tials, the following devices were employed. The program was written for any size 
of ellipse, but its use was in the main confined to semi-major axes less than 8. The 
necessary sines and cosines for use up to r = 8 were stored with the subroutine. 
An alternative method, requiring less storage, would be to build up the successive 
sines and cosines for a given r from stored values of sin (ir/3r) and cos (ir/3r) by 
the addition formulae. Wherever the index of an exponential in (12) fell below 
-10, the value of the corresponding term was taken to be zero. 

Figures in Table 1 illustrate the economy effected by this device. Without its 
use the number of evaluations of the exponential function required is independent 
of (h, k), and is given in the second column. When small terms are neglected the 
number needed depends on (h, k), and the maximum requirement is given in the 
third column. For values of /h2 + k2 exceeding a the number will be appre- 
ciably smaller than this maximum. The last column gives the number of evaluations 
of exponential or error function required in the Gaussian integration of [4] for 3 
decimal place accuracy. The method of the present note is faster for small ellipses, 
but slower for large ones. At higher levels of accuracy the method of [4] is more 
efficient, and the method described here is unsuitable for applications such as the 
preparation of the inverse tables of [4]. 

4. Tests of Accuracy. The approximation (16) was checked against the 4 deci- 
mal place values of [5]. These cover the region 

a, b = 0.5(0.5)3 h, k = 0(0.5)3. 

Six decimal place values were compared for the central ellipses 

a, b = 0.5(0.5)8 h = k = 0. 

Values of the same accuracy were employed for the offset circle with 

a = b = 0.5(0.5)8 N/Qif -i+ k2) = 0(0.5)10. 

Since the approximation has a period of ir/3 in angle and is symmetrical in the 
line 0 = 7r/6, the centres were taken along the x-axis, anid along lines making(, 
angles ir/12 and r/6 with it. 
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TABLE 1 

Number of evaluations of exp (x) and erf (x) 

Semi maj or axis Including all Small terms Method of ref. [4] terms neglected 

1 7 7 24 
2 19 19 a4 or 32 
3 37 37 32 or 48 
4 61 61 32 or 48 
6 127 78 48 
8 217 91 48 or 64 

The values of 0.5, 1.5 ... for the semi-major axis correspond to points of change 
in the number of annuli defined by (13). This was replaced by 

(17) m = integer part (semi-major axis + 0.499), 

to ensure that these test cases corresponded to the most unfavourable conditions, 
where each annulus takes its maximum width of unity along the major axis. 

In addition to the above tests, 500 values taken from the inverse tables [4] were 
also examined, to fill in regions not otherwise explored. The tables of [6] were also 
used as checks with semi-axes (a, a/f) for a, f = 1, 2, 4 and 8. Values of h, k are 
specified in these tables to cover probabilities down to at least 0.020. Since these 
tables are to three decimal places, they only provide an upper limit to the errors 
of (16). 

The maximum error encountered in all tests was 0.00065 for a circle of radius 
3.5. The figure below gives the error map for a circle of radius 2.5; an angular region 
of extent ir/6 suffices in view of the symmetry of the pattern. The loci are of posi- 
tions of the origin relative to the circle that give equal errors of the approximation, 
the figures shown by each locus being of error multiplied by 10,000. The shaded 
area, extending to infinity, corresponds to errors less than 0.0001. It will be seen 
that large errors occur at the centre, and just within and outside the circle. Errors 
at points of small probability are themselves small, and this behaviour is typical of 
results obtained in other cases. 

If the values di = 2.098 d2 = 1.347 are used, more accurate results are 
obtained for the central ellipse, the maximum error being 0.0003. For cases where a 
higher degree of accuracy is needed, and with a semi-major axis less than 1.5, 
we can add 

(18) tan- (ah \?1r (8bk) 12' 

to the angle -7rj/3 of (11). This, combined with the changed values of di and d2, 
reduces the maximum error of (11) to 0.0002. However, the inclusion of these 
changes for B1 in (16) slightly increases the maximum error recorded for all tests, 
giving a value of 0.0007. The use of similar anigular corrections in terms after B1 
weere found not to lead to worthwhile improvements. 

Tests in the offset circle case indicated that the errors for semi-major axes up 
to 12 are of much the same size as those described above. By replacing (17) by 
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FIG. 1. Curves of equal error for a circle of radius 2 -5 units 

(19) m = integer part (full major axis + 0.999), 

the number of exponentials to be evaluated is multiplied by 4. Using di = 2.098, 
d2 = 1.347 and omitting (18), the resulting maximum error found was 0.0001. 

5. Some other applications. For the same integrand, taken over the intelior of 
a simple closed curve C, the analogue of (3) leads to the approximation 

A 

2Ir{(m20 + 1)(mO2 + 1) - 

(MO2 + 1)h 2 _ 2ml hk + (M20 ? 1)k2 
>X exp - 2{(m20 + 1)(mO2 + 1) -m1} 

Here, A is the area and (h, k) the mean centre of the region of integration, while 

(21) Amij = (x - h)i(y -k) dx dy. 

This approximation will be useful for contours C with a small enough maximum 
width. However, for the ellipse, the geometrical similarity of C and of sections of 
the surface (3) indicates particularly favourable conditions for the method. Com- 
putations for a square of unit side gave a maximum error twice that for a circle of 
unit diameter. 

If we consider the integrand 

(22) exp -(x2 + y2 ? z2) 

taken over the interior of an ellipsoid with semi-axes (al, a2, a3) and centre (hi, 
h2, h3), a diffusion function analogous to (3) gives the approximation 

10 x/'5 a1 a2a3 3 h2 

3{2ir(ai2 + 5) (a22 + 5)(a32 + 5)1e } (a 2+ 5)J 

The process corresponding to (6) gives 

6250 a, a2 a3 
(24) 9{2ir(3ai2 + 25) (3a22 + 25) (3a32 + 25)} 

( 3ai(1 + hi + 25 exp 
25 

{ hj(a 
Thelio (22 3a42 + 25)2 opt2 sll (3aaj2 + 25i 

The linear combination (25I2 lIII)/14 is optimum for small axes. 
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An examination of accuracy is difficult because of the lack of tabled values of 
the integral. However, if a, = a2 and h =h2 = 0, conditions that include the 
offset sphere, an analytic solution is available. Computations show that, for this 
special case, errors of the linear combination of (23) and (24) for a semi-major 
axis less than one unit do not exceed 0.00003. Experience in the 2 dimensional 
case suggests that, with the same limitation on major axis, accuracy of the same 
order can be expected in general. Similarly, it seems likely that the use of a set of 
diffusion points could be developed, as for the ellipse. 

The author is indebted to the referee for suggesting the inclusion of Table 1, 
and for the data given in the last column of that table. 

Mathematics Department, 
Royal Aircraft Establishment, 
Farnborough, Hants., 
England. 
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